“……基于泽尔贝格教授于95年发表的那篇论文,我通过拓扑学原理对大筛法理论进行了进一步改良。而后在证明波利尼亚克猜想时,为了解决将素数间距从2推广到无穷大的难点,我又在其中引入了群论的方法。”
“关键性的一步在论文第二页的前三行可以体现,至于前面关于群论的一些铺垫性工作,我会放到后面一并讲解。”
一双双视线汇聚一点。
感受着那求真的视线,陆舟面向着台下,将ppt翻过一页,从容不迫地继续讲道。
“我们记s1(q,α)=∑e(α3/q),c1(q,α)=∑e(α3/q2),带入到td(n,q)=∑s1(q,αd3)·|c1(q,αd3)|·e(-an/q)/qψ2(q),可以得到级数δd(n)=∑td(n,q)绝对收敛。”
“这一步很关键,来源于赫尔夫戈特先生于13年发表的那篇关于弱哥德巴赫猜想的证明。”
“不过我们的目标与圆法不同,我们不是为了对圆周上的函数进行数论中的傅里叶分析,寻找不确定的上下界,而是为了对素数的分布进行近似估计。”
“从这一步开始,便是‘群构法’的关键……”
事实上,陆舟并不是第一个尝试将圆法和大筛法进行融合的人,就像他不是第一个将群论、拓扑学概念引入到数论问题中的人一样。
类似的尝试,赫尔夫戈特就曾做过,而且就体现在了他于13年发表的那篇论文中。
虽说他运用到的主要是圆法,但其中有部分结论,也是通过大筛法得出。
根据其本人在接受采访时对筛法和圆法的描述,他称之为两种方法就像是硬币的正反两面,如何去使用,就看你如何去抛这枚硬币。
对于群构法的核心理论,陆舟讲的格外细致,因为这是整篇论文的精华所在。
曾经对世界数论研究做出过杰出贡献的华国解析数论学派,自从华罗庚老先生仙逝之后,便走向了衰落,如今就像一件“文物”,被保存在水木大学,甚至有好事者用“全军覆没”一词来形容过。
究其原因,一部分的锅得老牌学阀来背,毕竟垄断院士投票权确实过分了点,虽说没钱没地位也能做学问,但这个大环境下没前途就等于没有新鲜血液。
当然,锅也并非全在别人身上,也有一部分的原因出自自身,那便是后人无法在前人的理论上做出创新,华老先生一人去世之后,他的学问便随他的生命一同停滞不前。
如果想要让华国解析数论学派在国际上重新绽放光彩,就必须为它注入新的东西。
陆舟希望,听过他讲座的教授,能将他的方法或者说理论带回水木、燕大、震旦、开大等等高校的课堂,甚至是项目课题中。
复兴一个学派,或者说建立一个学派,靠一个人的力量是不够的。
如果有人通过他的理论,解决了某个深奥的数学命题,他会为此感到很荣幸。
而陆舟也相信,群构法的理论并不止步于哥德巴赫猜想,许多堆垒素数的问题都可以通过这条思路进行分析。
“……到最后我们引入bobieri定理,可以得到ppt中的(29)式。并通过这关键性的一步,求出最后一行表达式。”
【px(1,1)≥p(x,x{1/16})-(1/2)∑px(x,p,x)-q/2-x(log4)……(30)】
到了这里,算式的格式和陈老先生的那篇论文,其实没什么两样了。
群构法源于大筛法。
而最终,所有的一切,都要回归到最终的命题上去。
“……由式(30)、引理8、引理9、引理10,便可最终证明定理1,即哥德巴赫-陆定理成立。”
当话音落下的瞬间,这座千人规模的礼堂里,响彻了热烈的掌声。
面对着全场的学者教授,陆舟微微鞠躬,在一片掌声中,从容地走下了讲台。